12 research outputs found

    On the Size and the Approximability of Minimum Temporally Connected Subgraphs

    Get PDF
    We consider temporal graphs with discrete time labels and investigate the size and the approximability of minimum temporally connected spanning subgraphs. We present a family of minimally connected temporal graphs with nn vertices and Ω(n2)\Omega(n^2) edges, thus resolving an open question of (Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity certificates. Next, we consider the problem of computing a minimum weight subset of temporal edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved in polynomial time if the underlying graph has bounded treewidth. We also show that the best approximation ratio for MTC is at least O(2log1ϵn)O(2^{\log^{1-\epsilon} n}) and at most O(min{n1+ϵ,(ΔM)2/3+ϵ})O(\min\{n^{1+\epsilon}, (\Delta M)^{2/3+\epsilon}\}), for any constant ϵ>0\epsilon > 0, where MM is the number of temporal edges and Δ\Delta is the maximum degree of the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard and that MTC is efficiently solvable in trees and 22-approximable in cycles

    Performance of 1\ell_1 Regularization for Sparse Convex Optimization

    Full text link
    Despite widespread adoption in practice, guarantees for the LASSO and Group LASSO are strikingly lacking in settings beyond statistical problems, and these algorithms are usually considered to be a heuristic in the context of sparse convex optimization on deterministic inputs. We give the first recovery guarantees for the Group LASSO for sparse convex optimization with vector-valued features. We show that if a sufficiently large Group LASSO regularization is applied when minimizing a strictly convex function ll, then the minimizer is a sparse vector supported on vector-valued features with the largest 2\ell_2 norm of the gradient. Thus, repeating this procedure selects the same set of features as the Orthogonal Matching Pursuit algorithm, which admits recovery guarantees for any function ll with restricted strong convexity and smoothness via weak submodularity arguments. This answers open questions of Tibshirani et al. and Yasuda et al. Our result is the first to theoretically explain the empirical success of the Group LASSO for convex functions under general input instances assuming only restricted strong convexity and smoothness. Our result also generalizes provable guarantees for the Sequential Attention algorithm, which is a feature selection algorithm inspired by the attention mechanism proposed by Yasuda et al. As an application of our result, we give new results for the column subset selection problem, which is well-studied when the loss is the Frobenius norm or other entrywise matrix losses. We give the first result for general loss functions for this problem that requires only restricted strong convexity and smoothness

    Capacitated Dynamic Programming: Faster Knapsack and Graph Algorithms

    Get PDF
    One of the most fundamental problems in Computer Science is the Knapsack problem. Given a set of n items with different weights and values, it asks to pick the most valuable subset whose total weight is below a capacity threshold T. Despite its wide applicability in various areas in Computer Science, Operations Research, and Finance, the best known running time for the problem is O(Tn). The main result of our work is an improved algorithm running in time O(TD), where D is the number of distinct weights. Previously, faster runtimes for Knapsack were only possible when both weights and values are bounded by M and V respectively, running in time O(nMV) [Pisinger'99]. In comparison, our algorithm implies a bound of O(nM^2) without any dependence on V, or O(nV^2) without any dependence on M. Additionally, for the unbounded Knapsack problem, we provide an algorithm running in time O(M^2) or O(V^2). Both our algorithms match recent conditional lower bounds shown for the Knapsack problem [Cygan et al'17, K\"unnemann et al'17]. We also initiate a systematic study of general capacitated dynamic programming, of which Knapsack is a core problem. This problem asks to compute the maximum weight path of length k in an edge- or node-weighted directed acyclic graph. In a graph with m edges, these problems are solvable by dynamic programming in time O(km), and we explore under which conditions the dependence on k can be eliminated. We identify large classes of graphs where this is possible and apply our results to obtain linear time algorithms for the problem of k-sparse Delta-separated sequences. The main technical innovation behind our results is identifying and exploiting concavity that appears in relaxations and subproblems of the tasks we consider

    Greedy PIG: Adaptive Integrated Gradients

    Full text link
    Deep learning has become the standard approach for most machine learning tasks. While its impact is undeniable, interpreting the predictions of deep learning models from a human perspective remains a challenge. In contrast to model training, model interpretability is harder to quantify and pose as an explicit optimization problem. Inspired by the AUC softmax information curve (AUC SIC) metric for evaluating feature attribution methods, we propose a unified discrete optimization framework for feature attribution and feature selection based on subset selection. This leads to a natural adaptive generalization of the path integrated gradients (PIG) method for feature attribution, which we call Greedy PIG. We demonstrate the success of Greedy PIG on a wide variety of tasks, including image feature attribution, graph compression/explanation, and post-hoc feature selection on tabular data. Our results show that introducing adaptivity is a powerful and versatile method for making attribution methods more powerful
    corecore